Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kelly, P. F., Slawin, M. Z., Williams, D. J. \& Woolins, J. D. (1990). Polyhedron, 9, 2659-2662.

Molecular Structure Corporation (1985). TEXSAN. TEXRAY Stucture Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.

Sheldrick, G. M. \& Egert, E. (1986). SHELX. Program for general direct methods and automatic Patterson. Univ. of Göttingen, Germany.
Singh, A. K. \& Srivastava, V. (1990a). Phosphorus Sulfur Silicon Relat. Elem. 47, 471.
Singh, A. K. \& Srivastava, V. (1990b). J. Coord. Chem. 21, 39-42, and references therein.
Singh, A. K. \& Srivastava, V. (1990c). J. Coord. Chem. 21, 269-273.
Singh, A. K., Srivastava, V. \& Khandelwal, B. L. (1990). Polyhedron, 9, 495, 851, and references therein.

Acta Cryst. (1992). C48, 657-660

Structures of Three Sesquiterpene $\boldsymbol{\gamma}$-Lactones from Rudbeckia mollis

By Marta Vasquez, Frank R. Fronczek, Leovigildo Quijano and Nikolaus H. Fischer
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 10 June 1991; accepted 8 July 1991)

Abstract

Acetoxyrudmollin, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}, M_{r}=$ 308.4, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=9.0071$ (10), $b=$ 10.053 (2), $c=18.144$ (2) $\AA, V=1642.9$ (7) $\AA^{3}, Z=$ $4, D_{x}=1.247 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $0.85 \mathrm{~cm}^{-1}, F(000)=664, T=295 \mathrm{~K}, \quad R=0.049$ for 1540 observations having $I>3 \sigma(I)$ (of 2158 unique data). (2): Rudmollin diacetate, $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}, M_{r}=$ 350.4, monoclinic, $P 2_{1}, a=8.117$ (2), $b=7.681$ (4), $c=14.865(3) \AA, \quad \beta=92.47(2)^{\circ}, \quad V=926.0(6) \AA^{3}$, $Z=2, \quad D_{x}=1.257 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA$, $\mu=7.29 \mathrm{~cm}^{-1}, F(000)=376, T=295 \mathrm{~K}, R=0.044$ for 3170 observations having $I>3 \sigma(I)$ (of 3747 unique data). (3): Dihydrorudmollin, $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}, M_{r}$ $=268.4$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=9.441$ (2), $b=$ 10.731 (2),$c=13.349$ (2) $\AA, V=1352.3$ (7) $\AA^{3}, Z=$ $4, D_{x}=1.320 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \mu=$ $0.88 \mathrm{~cm}^{-1}, F(000)=584, T=125 \mathrm{~K}, R=0.043$ for 2293 observations having $I>3 \sigma(I)$ (of 3335 unqiue data). Crystals of the three compounds were isolated from Rudbeckia mollis Ell (Asteraceae) which was collected in Putman County, Florida. All three compounds are ambrosanolide-type pseudoguaianolides. Dihydrorudmollin (3) has its methyl group β-oriented on the lactone. All compounds have the sevenmembered rings in twist-boat conformations with the methyl-bearing C atom on the pseudodiad and the cyclopentane ring in envelope conformations with the quaternary C atom C 5 at the flap. Hydroxyl groups of the two OH-bearing compounds [(1) and (3)] are involved in hydrogen bonding.

Introduction. Recently, we have isolated a new sesquiterpene lactone, $11 \alpha \mathrm{H}$,13-dihydrorudmollin (3) from R. mollis (Vasquez, Quijano, Urbatsch \&

Fischer, 1991). From the same plant we obtained two related sesquiterpene lactones, 15 -acetoxyrudmollin (1) and rudmollin diacetate (2), which had been previously reported by Herz, Kumar \& Blount (1981). The chemical structures of compounds (1), (2) and (3) were established on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR spectroscopic studies and chemical transformations. The molecular structures of pseudoguaianolides (1), (2) and (3) were determined in order to learn about the influence of the presence of acetate groups upon the conformation of the rudmollin skeleton in lactones (1) and (2) as well as the effects of saturation of the 11,13 -double bond found in (3), when compared to the molecular structure of rudmollin (Herz, Kumar \& Blount, 1981).

(1) $R=H$
(2) $R=\mathrm{Ac}$

(3)

Experimental. Intensity data for all three compounds were obtained from fragments of colorless needles, on Enraf-Nonius CAD-4 diffractometers equipped with either Mo $K \alpha(\lambda=0.71073 \AA)$ or $\mathrm{Cu} K \alpha(\lambda=$ $1.54184 \AA$) radiation and graphite monochromators. Data-collection parameters are summarized in Table 1. The cryogenic (125 K) data for (3) were collected using an N_{2} gas stream cryostat. Variable scan rates were employed in the $\omega-2 \theta$ scans, and a maximum
© 1992 International Union of Crystallography

Table 1. Summary of data collection and structure refinement parameters

	(1)	(2)	(3)
Crystal size (mm)	$0.33 \times 0.40 \times 0.58$	$0.33 \times 0.38 \times 0.53$	$0.35 \times 0.40 \times 0.52$
Cell constants from θ range (${ }^{\circ}$)	10-13	25-30	11-13
ω-scan width (${ }^{\circ}$)	$0.70+0.35 \tan \theta$	$0.70+0.14 \tan \theta$	$0.80+0.35 \tan \theta$
Scan speeds (${ }^{(10} \mathrm{min}^{-1}$)	0.56-4.00	1.03-3.33	0.71-4.00
Max. scan time per reflection (s)	120	60	120
Range for data collection			
$\theta\left({ }^{\circ}\right)$	1-27.5	2-75	1-35
h, k, l	0,11;0,13;0,23	-10,10;-9,9;-18,18	0,15;0,17;0,21
Standard reflections	200, 020, 006	300, 020, 002	300, 060, 002
Intensity decay (\%)		14.9	5.9
Empirical absorption correction max., min.		0.9960, 0.8802	
Reflections measured			
Total	2255	7695	3492
Unique	2158	3747	3335
Observed [$1>3 \sigma(I)]$	1540	3170	2293
$R_{\text {int }}$		0.020	
$R, w R$	0.049, 0.056	0.044, 0.055	0.043, 0.043
Variables	200	306	269
Max. shift/e.s.d. ratio	<0.01	0.09	< 0.01
Min., max. height in final $\Delta F\left(e \AA^{-3}\right)$	-0.19, 0.19	-0.27, 0.26	-0.24, 0.39
Goodness of fit, S	2.404	1.930	1.439
Extinction, g	$5.0(9) \times 10^{-7}$	$6.5(6) \times 10^{-6}$	$3.1(10) \times 10^{-7}$

was set on the time spent on a weak reflection. Cell dimensions were obtained from the setting angles of 25 reflections, including measurements at $\pm 2 \theta$. Intensity standards were remeasured every 10000 s , and linear decay corrections were applied for (2) and (3). One octant of data was collected within the specified θ limits for (1) and (3), while a full sphere of data was collected for (2). Data reduction included corrections for background, Lorentz and polarization effects. Absorption corrections for (2) were based on ψ scans.

Space groups for (1) and (3) were uniquely determined from systematic absences $h 00$ with h odd, $0 k 0$ with k odd and $00 l$ with l odd. The space group of (2) was determined from systematic absences $0 k 0$ with k odd and the known chirality of the compound. The structures of (1) and (2) were solved by direct methods, using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). Compound (3) is isomorphous with rudmollin (Herz, Kumar \& Blount, 1981) and coordinates for all non-H atoms except C 13 of rudmollin were used as an initial refinement model.

Structures were refined by full-matrix least squares based on F with weights $w=4 F_{o}^{2}\left[\sigma^{2}(I)+\right.$ $\left.\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$, using the Enraf-Nonius SDP (Frenz \& Okaya, 1980), scattering factors of Cromer \& Waber (1974), anomalous coefficients for (2) of Cromer (1974) and data having $I>3 \sigma(I)$. Non-H atoms were refined anisotropically and H atoms were located by ΔF syntheses. For (1), H atoms were included as fixed contributors with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$ and $B=1.3 B_{\text {eq }}$ for the bonded atom. For (2), acetate H atoms were treated as above, while other H atoms were refined with isotropic U 's. For (3), all H atoms were refined with isotropic U 's. Secondary-

Table 2. Positional parameters and equivalent isotropic thermal parameters with e.s.d.'s

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Compound (1)				
O1	0.0478 (3)	0.3790 (2)	-0.0041 (1)	5.52 (6)
O2	0.1494 (4)	-0.2410 (2)	0.0696 (1)	6.33 (7)
O3	0.0799 (5)	-0.3536 (2)	-0.0302 (2)	9.1 (1)
04	-0.1666 (2)	0.1378 (2)	0.1398 (1)	3.89 (4)
O5	-0.3337 (3)	0.2859 (3)	0.1782 (2)	6.75 (7)
C1	0.1968 (3)	0.1670 (3)	0.1419 (2)	3.57 (6)
C2	0.2375 (4)	0.3044 (3)	0.1717 (2)	4.60 (8)
C3	0.2087 (4)	0.4006 (3)	0.1072 (2)	4.70 (8)
C4	0.1466 (4)	0.3135 (3)	0.0451 (2)	3.90 (7)
C5	0.0730 (3)	0.1938 (3)	0.0839 (2)	3.18 (6)
C6	0.0443 (4)	0.0800 (3)	0.0290 (2)	3.61 (6)
C7	0.1724 (4)	-0.0199 (3)	0.0217 (2)	3.97 (7)
C8	0.1991 (4)	-0.1073 (3)	0.0906 (2)	4.34 (7)
C9	0.1206 (4)	-0.0721 (3)	0.1611 (2)	4.24 (7)
C10	0.1753 (4)	0.0538 (3)	0.1984 (2)	3.99 (7)
C11	0.1430 (6)	-0.1219 (3)	-0.0381 (2)	5.93 (9)
Cl 2	0.1210 (5)	-0.2501 (4)	-0.0019 (2)	5.78 (9)
C13	0.0973 (6)	-0.1020 (3)	-0.1071 (2)	5.8 (1)
C14	0.0812 (4)	0.0871 (4)	0.2654 (2)	4.93 (8)
Cl5	-0.0724 (4)	0.2456 (3)	0.1165 (2)	3.62 (6)
C16	-0.2971 (4)	0.1724 (3)	0.1702 (2)	4.25 (7)
Cl 7	-0.3832 (4)	0.0542 (4)	0.1915 (2)	5.59 (9)
Compound (2)				
Ol	0.2655 (2)	0	0.5458 (1)	8.05 (5)
O 2	0.1013 (3)	-0.2321 (4)	0.5452 (1)	10.19 (6)
O3	0.4870 (2)	0.2108 (2)	0.83888 (7)	4.56 (3)
04	0.5483 (2)	0.2050 (3)	0.98566 (9)	6.82 (4)
O5	0.0686 (2)	0.4835 (2)	0.87979 (9)	5.27 (3)
06	-0.1389 (3)	0.6641 (4)	0.8481 (2)	10.98 (6)
Cl	0.3447 (3)	0.4884 (3)	0.6922 (1)	4.97 (4)
C2	0.3787 (3)	0.6680 (4)	0.7324 (2)	6.44 (6)
C3	0.2358 (3)	0.6983 (4)	0.7960 (2)	6.25 (5)
C4	0.1406 (3)	0.5270 (3)	0.7943 (1)	4.85 (4)
C5	0.2645 (2)	0.3850 (3)	0.7694 (1)	4.02 (4)
C6	0.1778 (2)	0.2139 (3)	0.7413 (1)	4.00 (3)
C7	0.1235 (2)	0.1981 (3)	0.6410 (1)	4.56 (4)
C8	0.2690 (3)	0.1829 (4)	0.5769 (1)	5.83 (5)
C9	0.4432 (3)	0.2158 (4)	0.6141 (1)	5.59 (5)
C10	0.4816 (3)	0.4061 (4)	0.6378 (1)	5.95 (5)
C11	0.0310 (3)	0.0337 (4)	0.6229 (1)	5.54 (5)
C12	0.1302 (3)	-0.0810 (4)	0.5675 (2)	7.20 (6)
C13	-0.1102 (4)	-0.0213 (5)	0.6552 (2)	7.39 (7)
C14	0.6565 (3)	0.4234 (5)	0.6779 (2)	7.13 (7)
C15	0.3761 (2)	0.3544 (3)	0.8535 (1)	4.29 (4)
Cl 6	0.5658 (2)	0.1474 (3)	0.9118 (1)	4.28 (4)
C17	0.6724 (3)	-0.0031 (4)	0.8905 (2)	6.46 (5)
C 18	-0.0713 (3)	0.5629 (4)	0.8982 (2)	6.53 (5)
Cl 9	-0.1281 (3)	0.5117 (5)	0.9885 (2)	7.95 (7)
Compound (3)				
O1	0.7149 (2)	0.1303 (1)	1.0131 (1)	1.42 (2)
O 2	0.7896 (2)	0.4811 (1)	0.6248 (1)	1.80 (3)
O3	0.8462 (2)	0.6670 (1)	0.6881 (1)	2.39 (3)
04	0.4785 (2)	0.2531 (1)	0.9449 (1)	1.55 (2)
Cl	0.7116 (2)	0.1082 (2)	0.7389 (1)	0.86 (3)
C2	0.6852 (2)	-0.0280 (2)	0.7703 (1)	1.14 (3)
C3	0.7214 (2)	-0.0318 (2)	0.8826 (2)	1.23 (3)
C4	0.7533 (2)	0.1048 (2)	0.9115 (1)	1.02 (3)
C5	0.6725 (2)	0.1844 (2)	0.8335 (1)	0.82 (2)
C6	0.7251 (2)	0.3213 (2)	0.8338 (1)	0.98 (3)
C7	0.8490 (2)	0.3466 (2)	0.7635 (1)	1.02 (3)
C8	0.8046 (2)	0.3490 (2)	0.6513 (1)	1.20 (3)
C9	0.6650 (2)	0.2889 (2)	0.6218 (2)	1.25 (3)
Cl 10	0.6576 (2)	0.1474 (2)	0.6347 (1)	1.22 (3)
Cl 1	0.9175 (2)	0.4763 (2)	0.7753 (2)	1.29 (3)
Cl 2	0.8491 (2)	0.5550 (2)	0.6952 (2)	1.61 (3)
C13	0.9157 (3)	0.5381 (2)	0.8775 (2)	1.87 (4)
C14	0.5102 (2)	0.1008 (2)	0.6067 (2)	1.79 (4)
Cl 5	0.5131 (2)	0.1830 (2)	0.8566 (2)	1.15 (3)

extinction coefficients, g, were refined for all structures, with the correction factor $\left(1+g I_{c}\right)^{-1}$ applied to F_{c}. Final values of the extinction coefficients, residual densities in final ΔF maps, R factors and other details of the refinements are given in Table 1.

Atomic parameters for non-H atoms are given in Table 2, the molecular structures are shown in Figs. 1,2 and 3 , and selected bond distances, angles and torsion angles are given in Table 3.*

> * Complete tables of distances, angles, torsion angles, H-atom parameters, anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54441 (69 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU, England.

Fig. 1. The molecular structure of (1), with thermal ellipsoids drawn at the 20% probability level and H atoms represented by spheres of arbitrary size.

Fig. 2. The molecular structure of (2), with 20% ellipsoids.

Fig. 3. The molecular structure of (3), with 50% ellipsoids.

Table 3. Selected bond distances (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left(^{\circ}\right)$ for compounds (1), (2) and (3)

	(1)	(2)	(3)
Cl-C5	1.557 (4)	1.561 (3)	1.549 (3)
C5-C15	1.529 (4)	1.530 (2)	1.535 (3)
C7-C8	1.548 (5)	1.554 (3)	1.556 (3)
$\mathrm{Cl} 0-\mathrm{Cl} 4$	1.519 (5)	1.522 (3)	1.526 (3)
C11-Cl3	1.333 (5)	1.330 (4)	1.517 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 5$	104.7 (2)	104.3 (2)	103.9 (1)
$\mathrm{Cl}-\mathrm{C} 5-\mathrm{C} 4$	97.8 (2)	96.6 (2)	98.0 (1)
$\mathrm{Cl}-\mathrm{C} 5-\mathrm{Cl} 5$	114.3 (2)	115.3 (2)	113.1 (1)
C6-C7-C8	114.7 (3)	114.0 (1)	112.9 (2)
C7-C8-C9	118.7 (3)	119.0 (1)	118.5 (2)
C7-C11- Cl 2	107.4 (3)	109.0 (2)	104.7 (2)
$\mathrm{C5}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-30.1 (3)	-33.5 (2)	-32.8 (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	2.4 (4)	5.3 (3)	5.0 (2)
C2-C3-C4-C5	26.4 (4)	25.3 (2)	24.6 (2)
C3-C4-C5-C1	-43.3 (3)	-44.0 (2)	-43.5 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 5-\mathrm{C} 4$	44.8 (3)	47.1 (2)	46.6 (2)
$\mathrm{Cl} 0-\mathrm{Cl}-\mathrm{C} 5-\mathrm{C} 6$	-63.8 (4)	-60.2 (3)	-61.6(2)
$\mathrm{Cl}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	- 20.0 (4)	-22.0 (3)	-21.5 (2)
C5-C6-C7-C8	68.6 (2)	68.7 (3)	73.8 (2)
C6-C7-C8-C9	-10.9 (4)	- 10.4 (4)	- 18.6 (2)
C7-C8-C9-C10	-70.4 (4)	-70.6 (3)	-66.4 (2)
C8-C9- $\mathrm{Cl} 0-\mathrm{Cl}$	44.6 (4)	46.8 (2)	48.3 (2)
$\mathrm{C} 9-\mathrm{Cl0}-\mathrm{Cl}-\mathrm{C} 5$	46.2 (4)	42.2 (3)	41.0 (3)

Discussion. All three compounds are shown to be pseudoguaianolides of the ambrosanolide class, which typically contain a C14 β-methyl group. The methyl group C13 of compound (3) is also shown to be β-oriented. In all compounds, the lactone ring is cis-fused to the seven-membered ring and the other five-membered ring is trans-fused. In all three compounds, the seven-membered ring is in a twist-boat conformation with the pseudodiad passing through C10 and bisecting the C6-C7 bond. The asymmetry parameter ΔC_{2} (Duax \& Norton, 1975) has a value of 5.9 for (1), 8.9 for (2) and 5.0° for (3). In all three structures, the cyclopentane ring has the envelope conformation with C5 at the flap. Asymmetry parameters ΔC_{s} are 2.6 for (1), 5.7 for (2) and 5.7° for (3). The lactone ring is much flatter, and has the envelope conformation with C7 at the flap for compounds (1) and (3), which have asymmetry parameters $\Delta C_{s} 1.9$ and 2.8°, respectively, while diacetate (2) has its lactone ring in the half-chair conformation, with C 12 on the pseudodiad, and $\Delta C_{2} 0.8^{\circ}$. The conformations of these three pseudoguaianolides are analogous to that of rudmollin (Herz, Kumar \& Blount, 1981). Rudmollin also has both fivemembered rings in envelope conformations with C5 and C 7 at the flaps. Its seven-membered ring is an intermediate conformation and has been described by Herz, Kumar \& Blount (1981) as a boat, with a pseudomirror passing through Cl . Our computations show that ΔC_{s} for that description is 14.3°, while ΔC_{2} for the twist boat with C 10 on the pseudodiad [the conformation of (1), (2) and (3)] is smaller, at 9.2°. Bond distances for our compounds are normal and show good agreement. Bond distances in dihydrorudmollin (3) agree extremely well with those of rudmollin. The 18 bond lengths not involving

C11, in which the hybridization state differs, exhibit an r.m.s. deviation of $0.005 \AA$, with the largest individual difference, $0.013 \AA$, for $\mathrm{C} 8-\mathrm{C} 9$. Both our compounds containing OH groups exhibit hydrogen bonding in the solid. The hydroxyl group of Ol of acetate (1) forms an intermolecular hydrogen bond with lactone carbonyl oxygen O 3 at $x, y+1, z$ having O-O distance 2.746 (3) \AA. The angle about the unrefined H -atom position is 173°. The hydroxyl compound (3) exhibits both intramolecular and intermolecular hydrogen bonding. The intramolecular bond involves O 4 as donor and hydroxyl group O1 as acceptor, O-O distance 2.747 (2) \AA, angle at H 143 (3). The intermolecular hydrogen bond involves O 1 as donor and hydroxyl group O 4 at $\frac{1}{2}+$ $x, \frac{1}{2}-y, 2-z$, with $\mathrm{O}-\mathrm{O}$ distance 2.841 (2) \AA and angle at H 157 (3).

This research was supported by the Louisiana Education Quality Support Fund (86-89)-RD-A-13 and the National Science Foundation Biotechnology Program (Project No. EET-8713078). The purchase
of a diffractometer was made possible by an NSF instrumentation grant (CHE-8500781).

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2.B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: Plenum.
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Delft, The Netherlands.
Herz, W., Kumar, N. \& Blount, J. F. (1981). J. Org. Chem. 46, 1356-1361.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Vasquez, M., Quijano, L., Urbatsch, L. \& Fischer, N. H. (1991). Phytochemistry. Accepted.

Acta Cryst. (1992). C48, 660-662

Structure of a Potential Anticonvulsant: 5^{\prime}-Bromospiro[1,3-dioxolane-2,3'-indolin]-2'-one

By Amitabha De*
Department of Physics, University College of Science, 92 Acharyya Prafulla Chandra Road, Calcutta-700 009, India

(Received 10 June 1991; accepted 12 September 1991)

Abstract

C}_{10} \mathrm{H}_{8} \mathrm{BrNO}_{3}, \quad M_{r}=270.08\), monoclinic, $C 2 / c, \quad a=22.924$ (1), $\quad b=7.5051$ (4), $\quad c=$ 15.274 (10) $\AA, \beta=129.071$ (3) ${ }^{\circ}, V=2040.2$ (2) \AA^{3}, Z $=8, D_{m}=1.760$ (by flotation), $D_{x}=1.758 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{CuK} \mathrm{\alpha})=1.5418 \AA, \quad \mu=5.44 \mathrm{~mm}^{-1}, \quad F(000)=$ $1072, T=298 \mathrm{~K}, R=0.071$ for 1424 reflections with $I>2 \sigma(I)$. The bond linking the $\mathrm{C}(=0)$ atom to the tetrahedral C atom is a single bond. The amide group exhibits delocalization of the π-electrons over the three atoms (N, C and O). The five- and sixmembered rings are planar and inclined at a dihedral angle of $2.6(5)^{\circ}$. The dioxolane ring is almost perpendicular [89.4 (7) ${ }^{\circ}$] to the indolinone group. The crystal structure is stabilized by a three-dimensional network of $\mathrm{N}(1)-\mathrm{H}(\mathrm{N} 1) \cdots \mathrm{O}(1)$ hydrogen bonds.

[^0]Introduction. Anti-epileptic drugs have diverse chemical structures and complex physiological and pharmacological actions. The search for potential anti-epileptic drugs and their mechanism of action has been difficult because of their complexity. There is no single mechanism to explain the action of all anti-epileptic drugs. Some of these drugs have specific modes of action but others have not yet been linked with a specific binding site. A series of spiro[1,3-dioxane- $2,3^{\prime}$-indolin]- 2^{\prime}-ones and structural analogues active against electrically and chemically induced seizures have been studied. These compounds contain both an oxoindole and a dioxolane moiety which have independently been seen in other anticonvulsants (Popp, 1977, 1984). The basic model compound, mentioned above, was used to study the effect of various electron-donating, electronwithdrawing and hydrophobic groups on the activity of the molecule. In general a bulky hydrophobic

[^0]: * Present address: Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England.

